Improvement of equipment and technologies

DOI: 10.34828/UdSU.2021.81.56.002

УДК 620.3

M.K. Abdukhakimov, I.T. Garipov, R.A. Khaydarov¹, R.R. Khaydarov,

O.U. Gapurova, I.I. Sadikov, T.K. Praveen, S.Y. Evgrafova

NOVEL ION EXCHANGE FIBERS FOR WASTEWATER TREATMENT FROM HEAVY METAL IONS

Annotation. Since the last century the fiber sorbents are known to have excellent kinetic characteristics due to their physic–chemical structure. Their major advantages include a large specific surface, a high swelling capacity, a good mechanical strength and convenient use. Therefore the development of new types of ion exchange fibers is attracting attention from many laboratories all over the world. In the present study novel cation and anion exchange fibers for the removal of metal ions from wastewater have been developed. The effective removal of Co(II), Ni(II), Cu(II), Sr(II), Cd(II), Sb(II), Cs(I), Cr(VI) ions and molecules labeled by radionuclides from model or waste water by the newly developed fibrous sorbents has been achieved. The adsorption properties of the cation and anion exchange fibers have been shown to depend on the pH value.

Keywords: Polyester, Cation Exchange, Anion Exchange, Fiber Sorbent, Wastewater Treatment.

For citation: Abdukhakimov M.K., Garipov I.T., Khaydarov¹ R.A., Khaydarov R.R., Gapurova O.U., Sadikov I.I., T.K. Praveen, Evgrafova S.Yu. [Novel ion exchange fibers for wastewater treatment from heavy metal ions]. *Upravleniye tekhnosferoi*, 2021, vol. 4, issue 1. Available at: <u>https://technosphere-ing.ru</u> C. 88–97. DOI: 10.34828/UdSU.2021.81.56.002

Introduction

Drinking water and wastewater purification from radionuclides, heavy metal ions and organic contaminants is one of the most important problems of the modern world. To solve it, the ion exchange method utilizing different types of resins and fiber sorbents [1] is widely used.

The advantage of fiber ion-exchange sorbents over resin is their high sorption

rate, effective regeneration and a low pressure drop value of the sorbent layer for purified water [2-4]. The specific surface of fiber sorbents is $(2-3)^{-10^4}$ m²/kg, i.e. about 10² times greater than that of resin (10² m²/kg). Due to that, fiber sorbents have a much higher sorption rate than resin.

The main drawback of fiber sorbents is their very low specific weight which is $50-200 \text{ kg/m}^3$ [5-8].

There are many fiber filters produced in various plants, but most of them are intended only for air purification from dust and aerosols, and they do not have ionexchange properties. The purpose of this work is to develop a technology for producing dust fiber filters with ion exchange properties. In many cases, this approach is economically more effective because it does not require construction of new plants. One of the most produced dust filters is a polyester fiber filter. Its production process includes acrylonitrilic emulsion treatment to improve mechanical characteristics. This feature can be used in the technology for producing cation and anion exchange sorbents.

Materials and Methods

A polyester fiber filter with surface density of 0.270 kg/m2 and thickness of 10 mm was utilized as a raw material for making ion exchange sorbents. The mass of the polyacrylonitrilic layer on the fibers' surface was 15% of the total mass of the filter.

1-10% NaOH solutions and 0.5-5% polyethylenimine (-NHCH2CH2-)x[-(CH2CH2NH2)CH2CH2-]y solutions were used for the treatment of polyester fiber filters to make ion exchange sorbents.

The 0.001M CuCl2 solution labeled by 64Cu and the K2Cr2O7 solution (pH 2) labeled by 51Cr were used to find out the best technology of making cation and anion exchange sorbents, respectively. The radionuclides 64Cu and 51Cr were produced by irradiating CuCl2 and K2Cr2O7 in the nuclear reactor of the Institute of Nuclear Physics (Tashkent, Uzbekistan). A Ge(Li) detector with a resolution of about 1.9 keV

89

at 1.33 MeV and a 4096-channel multichannel analyzer were used to detect a γ quantum from radionuclides. Areas under γ -peaks of radionuclides 64Cu (the halflife, T1/2, is equal to 12.8 h, the energy of the γ -peak, E γ , is equal to 0.511 MeV) and 51Cr (the half-life, T1/2, is equal to 27.72 d, the energy of the γ -peak, E γ , is equal to 0.320 MeV) were measured to calculate the amount of Cu and Cr, respectively.

Other radionuclides used in investigations of sorbents' characteristics as labels of ions and organic substances are given in Table 1.

Table 1.

Elements	Radionuclides	T _{1/2}	Ey, MeV
M- ³² P	³² P	14.3 d	$E_{\beta} = 1.7$
Cr(VI)	⁵¹ Cr	27.73 d	0.320
Co(II)	⁶⁰ Co	5.27 y	1.17, 1.33
Ni(II)	⁶⁵ Ni	2.5 h	1.480
Cu(II)	⁶⁴ Cu	12.7 h	0.511
Zn(II)	⁶⁵ Zn	244.1 d	1.115
Br(I)	⁸² Br	35.3 h	0.776
Sr(II)	⁸⁹ Sr	50.5d	0.909
M- ⁹⁹ Mo+ ^{99m} Tc	⁹⁹ Mo+ ^{99m} Tc	66 h (6.0 h)	0.140
Cd(II)	¹¹⁵ Cd	53.5 h	0.336
Sb(II)	124 Sb	60.2 d	1.691
M- ¹³¹ I	¹³¹ I	8.04 d	0.364
Cs(I)	¹³⁴ Cs	2.07 у	0.605

Radionuclides used as labels

The exchange capacity Q, meq/g, was calculated by Equation (1):

$$Q = (A_0 - A_e) / (A_0 - A_B) B / W$$
(1)

where B is the carrier amount, meq; W is the exchanger weight, g; A_0 is a count rate of the original solution; A_e is a count rate of the solution at equilibrium; A_B is a background count.

The distribution coefficient K_d and the percent adsorption P were calculated by Equations (2), (3):

$$K_{d} = ((A_{0} - A_{B}) / (A_{e} - A_{B}) - 1) V / W$$
(2)

$$P = 100 (1 - (A_e - A_B) / (A_0 - A_B))$$
(3)

where V is a total volume of the solution, ml.

The sorption processes of ions from water in dynamic conditions were studied by using columns with a diameter of 12 mm; the weight of sorbents was 1 g.

Results and Discussion

The kinetics of saponification of the fibers and the alteration of linkage quality between the polyester fiber and the polyacrylonitrile layer after chemical treatment of filters were studied in the range of NaOH solution concentration from 1 to 10%. For example, the results for concentration of 5% are given in Figures 1 and 2.

An increase in solution treatment temperature and treatment duration causes filter capacity increase, but linkage between the polyester fiber and the polyacrylonitrile layer is attenuated and the layer begins scattering. Thus, the treatment with a 5% solution of NaOH at 45-50°C for 1 hour was selected as the optimal condition for cation exchange sorbents production. The exchange capacity (Cu^{2+}) of the sorbents is 0.25 meq/g.

Figure 1. Kinetics of saponification of the fibers in a 5% NaOH solution at 25°C (1), 30°C (2), 40°C (3), 50°C (4), 70°C (5) and 90°C (6)

Anion exchange sorbents are made by treatment of cation exchange filters in an H-form with a water solution of polyethylenimine. Amine groups attach to carboxy groups by electrostatic forces. The kinetics of anion exchange groups' formation at concentrations of polyethylenimine from 0.5 to 5% and temperature from 20° to 70°C were studied. Figure 3 demonstrates a kinetics curve at 40°C and a 1% concentration of polyethylenimine. Figure 4 shows dependence of exchange capacities on the concentration of polyethylenimine at 40°C and the treatment time of 8 hours.

The treatment of the cation exchange sorbents with a 1% solution of polyethylenimine at 40°C for 8-10 hours was selected as the optimal condition for the anion exchange sorbents' production. The sorbents' capacity (Cr^{6+}) is 0.45 meq/g.

Removing heavy metal ions (Zn, Ni, Cu, Sb, Co, Cd, Cr, etc.) and organic molecules labeled by radionuclides ($M^{-32}P$, $M^{-131}I$, $M^{-99}Mo^{+99m}Tc$, etc.) from water was studied. Dependence of the distribution coefficient K_d for different ions and organic substances on the solutions' pH is presented in Table 2.

Figure 2. Change in linkage quality between polyester fibers and the polyacrylonitrile layer after chemical treatment during t minutes at 30°C (1), 50°C (2), 60°C (3) and 70°C (4).

Figure 4. Dependence of exchange capacities on the concentration of polyethylenimine at 40°C.

Table 2.

The distribution coefficient $K_d (mL/g)$ for different ions and organic substances ($C_0 = 10 \text{ mg/L}$, V = 50 mL, W = 0.5 g).

Elements	Exchanger	pH of solutions									
		1	2	3	4	5	6	7	8	9	10
Co(II)	Cationic	3000	2600	2300	2000	1700	1000	126	138	150	160
Ni(II)		125	600	870	920	990	750	430	510	780	1000
Cu(II)		140	400	600	480	400	560	650	560	460	340
Zn(II)		230	2000	4000	5000	4000	1900	1700	1400	900	800
Sr(II)		11	25	45	100	300	1000	1900	8000	6000	900
Cd(II)		980	830	680	520	380	240	97	75	46	17
Sb(II)		260	190	150	130	120	120	115	90	70	35
Cs(I)			100	200	900	1900	3200	4000	4000	1500	11
Cr(VI)	Anionic	200	150	100							
M- ³² P			3200	3000	2700	2500	1900	1100	300	150	
M- ¹³¹ I			3100	2800	2600	2300	2100	1900	500	150	
⁹⁹ Mo+				2900	2800	2400	2300	2000	500	140	
^{99m} Tc											

The specific behavior of the K_d of Co(II), Ni(II) and Cu(II) is explained by the dependence of the relation between the M^{n+} form and hydrolyzed forms in the solution on pH [9]. The influence of additional foreign cations Na⁺ and K⁺ on the adsorption of different metals at pH = 7 is presented in Table 3.

Table 3.

The influence of additional foreign cations Na⁺ and K⁺ on the distribution coefficient $K_d (mL/g)$ of different ions at pH = 7.

Elements	N	Na ⁺	-	$Na^+ + K^+$	
	10 mg/L	100 mg/L	10 mg/L	100 mg/L	100+100 mg/L
Co(II)	130	140	130	140	140
Ni(II)	510	300	520	420	500
Cu(II)	600	460	550	530	530
Zn(II)	1700	800	1700	800	800
Cd(II)	38	34	50	32	20
Sb(II)	115	115	115	115	115

Adsorbed ions were eluted with a 1M HCl solution at a flow rate of 2 mL per minute, and 1 mL fractions were collected each time for radiometric measurements. As an example, Figure 5 shows elution profiles of copper, cobalt and cadmium: activity in count per minute (CPM) per fraction is plotted against the volume of eluant. About 95% of adsorbed ions were recovered by elution with a 30 mL HCl solution. The capacity decrease ΔQ % against a number N of regenerations was studied. Test results are given in Figure 6.

Figure 5. Elution profiles of copper, cobalt and cadmium against

the volume of eluent

Figure 6. The capacity ΔQ decrease against a number N of regenerations

Nonwoven cloth weighing 1 kg/m² made of analogous fibers is widely used in filters with an output of 3,000 to 25,000 m³/h for removal of SO₂, SO₃, HF, HCl, Cl₂, NH₃, H₂S, NH₂-NH₂ and other gases and liquid aerosols, the most common atmospheric pollutants [10-15].

Conclusion

The studies show that chemically modified polyester fiber filters have satisfactory adsorption characteristics. The synthesised cation and anion exchange sorbents can be used for removing metal ions (Zn, Ni, Cu, Sb, Co, Cd, Cr, etc.) and organic compounds ($M^{-32}P$, $M^{-131}I$, $M^{-99}Mo^{+99m}Tc$, etc.) from wastewater. The cation exchange sorbents' capacity is 0.25 meq/g (Cu^{2+}) while the anion exchange sorbents' capacity is 0.45 meq/g (Cr^{6+}).

REFERENCES

- Luqman I. M. Ion Exchange Technology I Theory and Materials, Springer Science & Business Media., 2012
- Kragten J. Atlas of Metal-Ligand Equilibria in Aqueous Solution, *Ellis Horwood Ltd.*, Chichester, 1978
- Nemilova, T.V., Emets, L.V., Nemilov, V.N. et al. Fibre Chem, 1996, 28: 381. doi: 10.1007/BF01061000.
- 4. Zverev M. P. Fibroid chemosorbents, Chemistry, Moscow, 1981
- 5. Khaydarov R. A, Khaydarov R. R., Cho S., Natural disaster: prevention of drinking water

scarcity, *Threats to Global Water Security (Jones, J. et. al.: Eds.), Springer*, Netherlands, 1981, pp. 381 – 384.

- Khaydarov R.A, Gapurova O., Khaydarov R.R, Cho S.Y. Fibroid Sorbents For Water Purification, in Modern Tools and Methods of Water Treatment for Improving Living Standards, *NATO Science Series, 1V. Earth and Environmental Sciences*, 2005, vol. 48, pp. 101 – 108
- Khaydarov R.A, Khaydarov R.R. Purification of drinking water from ^{134, 137}Cs, ^{89, 90}Sr, ⁶⁰Co and ¹²⁹I, in Medical Treatment of Intoxication and Decontamination of Chemical Agent in the Area of Terrorist Attack, *NATO Science Series –A: Chemistry and Biology*, 2006, vol. 1, pp. 171–181.
- Khaydarov R. A, Khaydarov R. R Environmental Change in the Aral Sea Region: New Approaches to Water Treatment in Environmental Change and Human Security: Recognizing and Acting on Hazard Impacts, *NATO Science for Peace and Security Series C: Environmental Security*, Springer Netherlands, 2008, pp. 433 – 447.
- 9. Ashirov A. Ion-exchange purification of waste water, solutions and gases, *Chemistry*, Leningrad, USSR.,1983
- 10. Zverev, M. P. Fibre Chem, 1994, 25: 498. doi: 10.1007/BF00550794.
- Astapov A.V., Peregudov Y. S., Kopylova V. D. et al. (2010) The hydration characteristics of chemisorption fiber VION KN-1 in the nickel and zinc forms. *Russian Journal of Physical Chemistry* A, 2010, vol. 84, pp 491–494.
- Khaydarov R.R., Gapurova O. U., Khaydarov R.A etc «The Application of Fibrous Ion-Exchange Sorbents for Water Treatment and the Purification of Gaseous Mixtures», Advances in Materials Science Research, *Nova Science Publishers*, 2017, vol. 30, pp. 229 – 239
- 13. M. Young The Technical Writer's Handbook. Mill Valley, CA: University Science., 1989
- Khaydarov R.A., Khaydarov R.R., Gapurova O.U., Nasirova N. (2013) VOC Degradation in the Atmosphere by Nanophotocatalysts. In: Barnes, I (ed) Disposal of Dangerous Chemicals in Urban Areas and Mega Cities, *NATO Science for Peace and Security Series C: Environmental Security.*- Springer (Netherlands), 2013, pp. 139 – 150
- Khaydarov R.R., Khaydarov R.A., Mironov V., Gapurova O. Malikov Sh. Using fibrous sorbents for water treatment from radionuclides. *Uzbek Journal of Physics*. Tashkent, 2007, vol. 9(2), pp. 144 – 150

Received 19.02.2021

About the Authors

Abdukhakimov Murodjon Kakhramonovich graduate student, Laboratory of Interdisciplinary Technologies, Institute of Nuclear Physics, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan E-mail: <u>murod@inp.uz</u>

Garipov Ilnur Tagirovich graduate student, Institute of Nuclear Physics, Academy of Sciences of the Republic of Uzbekistan, 100214, Tashkent, Uzbekistan. E-mail: <u>ilnurgarif@gmail.com</u>

Khaydarov¹ R.A.

Professor, doctor of technical Sciences, head of the Department of scientific instrumentation. The author inserted posthumously. Institute of Nuclear Physics, Academy of Sciences of the Republic of Uzbekistan, 100214, Tashkent, Uzbekistan.

Khaidarov Renat Rashidovich

Candidate of Phys.-Math Sci., Head of Laboratory, Institute of Nuclear Physics, Academy of Sciences of the Republic of Uzbekistan, 100214, Tashkent, Uzbekistan E-mail: <u>renat@inp.uz</u>

Gapurova Olga Urumbaevna

Candidate of Chemical Sciences, Junior Researcher, Institute of Nuclear Physics, Academy of Sciences of the Republic of Uzbekistan, 100214, Tashkent, Uzbekistan. E-mail: gapurova2011@yandex.ru

Sadikov Ilkham Ismailovich

Doctor of Chemical Sciences, Professor, Laboratory of Interdisciplinary Technologies, Institute of Nuclear Physics, Uzbekistan Academy of Sciences, 100214, Tashkent, Uzbekistan. E-mail: <u>ilkham@inp.uz</u>

Praveen Thaggikuppe Krishnamurthy

PhD, Professor, Department Head, JSS College of Pharmacy, Ooty, The Nilgiris Tamil Nadu, India. E-mail: praveentk7812@gmail.com

Evgrafova Svetlana Yuryevna

Candidate of Biological Sciences, Associate Professor, Senior Researcher, Federal State Budget Scientific Institution "Federal Research Center" Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences ", Forest Institute named after V.N. Sukachev, 660036, Krasnoyarsk, Akademgorodok, no. 50/28, Russia. E-mail: esj@yandex.ru