S.A. Khorkov
ON THE MANUAL AND NATURAL CASE IN THE TECHNOCENOSIS MODEL

Annotation. It is proposed to consider a geometric model of technocenosis to distinguish between manual and spontaneous cases according to Mandelbrot. If the random vector on the projection of the hyperboloid does not depend either on the magnitude of the components or on the direction of the vector, then the case is tame - Gaussian. If a random vector on the projection of a hyperboloid depends on the magnitude of the components and on the direction of the vector, then the case is spontaneous - non-Gaussian.
Keywords: technocenosis, random vector, manual case, natural case.

For citation: Khorkov S.A. [On the manual and natural case in the technocenosis model]. Upravleniye tekhnosferoy, 2019, vol. 2, issue 3. (in Russ.) Available at: f-ing.udsu.ru/technosphere

REFERENCES

 

  1. KHor’kov S.A. [The study of the power consumption structure of the multinomenclature workshop of an industrial enterprise with the aim of substantiating its calculation method]. Promyshlennaya energetika, 2015, no. 10, pp. 36 – 39. (in Russ.)
  2. KHor’kov S.A. [The geometric model of technocenosis]. Promyshlennaya energetika, 2011, no.1, pp. 24 – 27. (in Russ.)
  3. Mandel’brot B. Fraktaly, sluchay i finansy. [Fractals, case and finance], Moscow – Izhevsk: Research Center "Regular and chaotic dynamics", 2005, 255 p. (in Russ.)
  4. Opoytsev V.I. SHkola Opoytseva: teoriya veroyatnostey [Opoitsev School: Theory of Probability], textbook, Moscow: LENAND, 2018, 280 p. (in Russ.)
  5. Zolotarev V.M. Ustoychivyye zakony i ikh primeneniya. [Stable laws and their application]. Moscow: Znanie, 1984, 64 p. (in Russ.)
  6. Korolyuk V. S., Portenko N. N., Skorokhod A. V., Turbin A. F. Spravochnik po teorii veroyatnostey i matematicheskoy statistike. [Handbook on probability theory and mathematical statistics], Moscow: Nauka. Home edition physical and mathematical literature, 1985, 640 p. (in Russ.)
  7. KHaytun S.D. Evolyutsiya i negaussovy raspredeleniya: filosofskiye osnovaniya tekhnetiki. [Evolution and non-Gaussian distribution: philosophical foundations technetic]. TSenologicheskiye issledovaniya, issue 19, Moscow: Center of system research, 2002, pp. 536 – 545. (in Russ.)
  8. CHaykovskiy YU.V. [About the nature of randomness: monograph]. TSenologicheskiye issledovaniya. issue 19, Moscow: Center of system research. Institute for the history of science and technology, 2001, 272 p. (in Russ.)
  9. Kudrin B. I. [The Mathematics of cenoses: species, rangewide, rank for giperbolicheskie N-distribution and the laws of the Trays, texts, Pareto, Mandelbrot. Philosophical foundations technetic]. TSenologicheskiye issledovaniya, issue 19, Moscow: Center of system research, 2002, pp. 357 – 412. (in Russ.)
  10. Sevast’yanov B.A. Kurs teorii veroyatnostey i matematicheskoy statistiki. [The theory of probabilities and mathematical statistics]. Moscow: Nauka. Home edition physical and mathematical literature, 1982, 256 p. (in Russ.)
  11. Prokhorov YU.V. Teoriya veroyatnostey. [The Theory of probability], Moscow: Nauka, 1967, 485 p. (in Russ.)
  12. KHor’kov S.A. Problema rascheta elektropotrebleniya mnogonomenklaturnogo tsekha promyshlennogo predpriyatiya, modeli i metodiki dlya eyë resheniya. [The Problem of calculating power consumption of the multiproduct plant of industrial enterprise, models and methods to address it], Izhevsk: Publishing house of Izhevsk state technical University named after M. T. Kalashnikov, 2019, 128 p. (in Russ.)

About the Authors

Horkov Sergey Alekseevich

Associate Professor, Department of Thermal Power Engineering, Institute of oil and gas is named

M. S. Gutseriev, Federal State Budgetary Educational Institution of Higher Education "Udmurt state University", 426034, Universitetskaya str., 1/7, Izhevsk, Russia.

Email: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.

PDFON THE MANUAL AND NATURAL CASE IN THE TECHNOCENOSIS MODEL pdf (973 KB)